Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering
Semester :	6th
Course Code:	17CVL67
Course Title:	Software Application Lab
Credit / L-T-P:	2 / 1-0-2
Total Contact Hours:	40
Course Plan Author:	MOHAN K T

Academic Evaluation and Monitoring Cell

Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23721477/23721315 www.Skit.org, Email: skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	4
4. Laboratory Prerequisites:	
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	5
1. General Instructions	
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Experiments	
6. Experiments Beyond Syllabus	
D. COURSE ASSESSMENT	-
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
D. EXPERIMENTS	
Experiment 01 : Analyze the given truss using STAAD Pro software	
Analyze the given truss using STAAD Pro software	
Experiment 02	
Analyze the given continuous beam using STAAD Pro software	
Analyze the given Portal Frames using STAAD Pro software	
Analyze the given Portal Frames using STAAD Pro software	
To Analyze the given Portal Frames using STAAD Pro software	
Experiment 04 : scheduling of project	
Experiment 05 : design of singly reinforced beams singly reinforced beams	
Experiment 06 : design of doubly reinforced beams	
doubly reinforced beams	
Experiment 07 : design of one way slabs	
Experiment 08 : design of two way slabs	
Experiment 09 : computation of earthwork	
Experiment 10 : design of horizontal curve	
Experiment 11 : design of super elevation	
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	19

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B. E	Program	CIVIL
Year / Semester :	3 / 6TH	Academic Year:	2019-20
Course Title:	Computer Aided Detailing of Structures	Course Code:	17CVL67
Credit / L-T-P:	02/1-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	
Course Plan Author:	ΜΟΗΑΝ Κ Τ	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Exp	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Analysis of plane trusses.	03	Truss	L4
2	Analysis of continuous beams.	03	Beams	L4
3	Analysis of portal frames.	03	Portal Frames	L4
4	Understanding basic features of Project management software.	03	Project Manageme nt	L3
5	Design of Singly Reinforced Beams	03	Design of Beams	L6
6	Design of Doubly Reinforced Beams	03	Design of Beams	L6
7	Design of One way Slabs	03	Design of Slabs	L6
8	Design of Two way Slabs	03	Design of Slabs	L6
9	Computation of Earthwork	03	Estimation	L3
10	Design of horizontal curve by offset method	03	Design of Horizontal Curve	L6
11	Design of Super elevation.	03	Design of super elevation	L6

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	Training manuals and User manuals and Relevant course reference		In Lib / In Dept
4, 5	books		
1			In Lib⁄ In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2			In Lib
1, 2			Not Available
3, 4, 5			
С	Concept Videos or Simulation for Understanding	-	-
1	https://youtu.be/w9t7Ht9HcGg		
2	https://youtu.be/RwXcH-2wE-A		
3	https://youtu.be/a5VlPG1C8js		
4	https://youtu.be/GkBQUI6waFQ		
5	https://youtu.be/mx3di5cGO6s		
6	https://youtu.be/h83KKRtbXwM		
7	https://youtu.be/gPKFfU3iTyQ		
8	https://youtu.be/FzOKmn2xG20		
9	https://youtu.be/0apl52PVi3Q		
10	https://youtu.be/6Yo8tmlC0mc		
11	https://youtu.be/FoFmtz0PwE4		
12	https://youtu.be/g4008yH20bc		
13	https://youtu.be/omrr9osx4dM		
14	https://youtu.be/GD760_NqXjU		
15	https://youtu.be/FA9N22DYjuQ		
16	https://youtu.be/D6axnPS3KH4		
D	Software Tools for Design	-	-
	Staad.Pro, ETABS, Primavera, MSP , Excel, GIS.		
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	· ·	-
1			_
?			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

-	-	Base	Course	0						-	-
SNo	Course	Course Name		Topic / Description		Sem	Remarks				
	Code										
1	15CV51	Design	of	RC	Analysis	and	Design	concepts	of RCC	5	
		Structura	l Eleme	ents	structura	l elem	ents	-			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
1				
3				
3				
5				
-				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks							
1	Observation book and Lab record are compulsory.								
2	Students should report to the concerned lab as per the time table.								
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.								
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.								
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.								
6	Should attempt all problems / assignments given in the list session wise.								
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.								
	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.								
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year								
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given								

2. Laboratory Specific Instructions

SNo	Specific Instructions Remarks						
1	Start computer						
2	Open the text editor						
3	Select new file.						
4	Write the program						
5	Save the program with .c extension.						
6	Compile the program F9						
7	Execute the program F10						

C. OBE PARAMETERS

1. Laboratory Outcomes

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

#	COs	Teach.	Concept	Instr Method	Assessment	Blooms'
		Hours			Method	Level
	Students should be able to analyze the Plane Trusses	06	Truss	Demonstrate	Assignment	L4
	Students should be able to analyze the continuous beams.	06	Beams	Demonstrate	Assignment	L4
3	Students should be able to analyze the Portal Frames	06	Portal Frames	Demonstrate	Assignment and Slip Test	L4
· ·	Students should be able to Schedule the project using MSP	12	Project Managem ent	Demonstrate	Assignment	L3
-	Students should be able to design the Singly Reinforced Beams	2	Design of Beams	Demonstrate	Assignment	L6
	Students should be able to design Doubly Reinforced Beams	2	Design of Beams	Demonstrate	Assignment	L6
	Students should be able to design One Way Slabs	2	Design of Slabs	Demonstrate	Assignment	L6
	Students should be able to design Two way Slabs.	1	Design of Slabs	Demonstrate	Assignment and Slip Test	L6
0	Students should be able to measure earthwork.	1	Estimation	Demonstrate	Assignment	L3
	Students should be able to design horizontal curve	1	Design of Horizontal Curve	Demonstrate	Assignment	L6
	Students should be able to design Super elevation.	1	Design of super elevation	Demonstrate	Assignment	L6
-	Total	40	-	-	-	-

2. Laboratory Applications

SNo	Application Area	CO	Level
1	Analysis of Plane Trusses.	CO1	L4
2	Analyze the Continous Beams.	CO2	L4
3	Analysis of Portal Frames.	CO3	L4
4	Project Management	CO4	L4
5	Design of singly reinforced beams.	CO5	L4
6	Design of doubly reinforced beams.	CO6	L4
7	Design of one way slabs.	CO7	L4
8	Design of two way slabs.	CO8	L4
9	Useful in the estimation f earthwork calculations.	CO9	L4
10	In the design of highways.	CO10	L4
11	In the design of highways.	CO11	L4
N L . L . N			

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Марр	ing	Mapping Level	Justification
СО	PO	-	-
CO1	PO1	L4	Applying the knowledge of engineering science fundamental concepts to analyze the plane Trusses
CO1	PO5	L4	STAAD PRO can be used as a tool for analyzing Plane Trusses.
CO1	PO11	L4	knowledge of analyzing and apply the concepts of designs to make plans and projects.
CO2	PO1	L4	Applying the knowledge of engineering science fundamental concepts to analyze the Continuous beams
CO2	PO5	L4	STAAD PRO can be used as a tool for analyzing Continous Beams.
CO2	PO11	L4	knowledge of analyzing and apply the concepts of designs to make plans and projects.
CO3	PO1	L4	Applying the knowledge of engineering science fundamental concepts to analyze the Portal Frames
CO3	PO5	L4	STAAD PRO can be used as a tool for analyzing Portal Frames
CO3	PO11	L4	knowledge of analyzing and apply the concepts of designs to make plans and projects.
CO4	PO1	L3	Applying the knowledge of engineering science fundamental concepts in planning, scheduling and controlling the project
CO4	PO5	L3	Microsoft office project which can be used as a project scheduling software or for small buildings.
CO4	PO11	L3	knowledge of project Scheduling helps in the project management
CO5	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design the Singly Reinforced beams
CO5	PO5	L6	Excel is the tool used for designing of singly Reinforced Beams.
CO5	PO11	L6	Knowledge of design concepts can be used in the project purposes.
CO6	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design the Doubly Reinforced beams
CO6	PO5	L6	Excel is the tool used for designing of Doubly Reinforced Beams.
CO6	PO11	L6	Knowledge of design concepts can be used in the project purposes.
CO7	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design the One Way Slabs
CO7	PO5	L6	Excel is the tool used for designing of One Way Slabs.
CO7	PO11	L6	Knowledge of design concepts can be used in the project purposes.
CO8	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design the Two Way Slabs
CO8	PO5	L6	Excel is the tool used for designing of Two Way Slabs.
CO8	PO11	L6	Knowledge of design concepts can be used in the project purposes.
CO9	PO1	L3	Applying the knowledge of engineering science fundamental concepts to Measure the quantities of Earthwork.
CO9	PO5	L3	Excel is the tool used for measuring the earthwork quantities
CO10	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design Horizontal Curves
CO10	PO5	L6	Excel is the tool used for designing of horizontal Curves.
CO10	PO11	L6	Knowledge of design concepts can be used in the project purposes.
CO11	PO1	L6	Applying the knowledge of engineering science fundamental concepts to design of Super elevation.
CO11	PO5	L6	Excel is the tool used for designing of Super Elevation.
CO11	PO11	L6	Knowledge of design concepts can be used in the project purposes.

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Expe	eriment O	utco	mes			Program Outcomes											-			
Expt	CO.#	At the e	nd of the	exp	erimer	nt	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student	should b	e ab	ole to .		1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	17CVL67.1	Students	should	be	able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6

LABORATORY PLAN - CAY 2019-20

											,		,,									
		analyze th																				
2	17CVL67.2						3	3	3	2	3	2	2	3	3	3	3	3				L6
		analyze th	ie continu	lous	beams	S.																
3	17CVL67.3	Students	should	be	able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		analyze th	ne Portal F	- ram	es																	
4	17CVL67.4	Students	should	be	able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		Schedule																				
5	17CVL67.5							3	3	2	3	2	2	3	3	3	3	3				L6
		, U	the Sing	ly R	einford	ced																
		Beams																				
6	17CVL67.6							3	3	2	3	2	2	3	3	3	3	3				L6
		, U	Doubly	/ R	einford	ced																
		Beams																				
7	17CVL67.7				able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		design Or																				
8	17CVL67.8				able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		design Tw																				
9	17CVL67.9				able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		measure e																				
10	17CVL67.10				able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		design ho																				
11	17CVL67.11			be	able	to	3	3	3	2	3	2	2	3	3	3	3	3				L6
		Super ele	vation.																			
		-																				
-	CS501PC							3			-		2	3	3	3	3	3				-
-		1.Engineer																				
		4.Conduct																				
		Society; 7.Environment and												•								
		10.Communication; 11.Project					0									2.Life	e-lo	ng	Le	earr	ning;	
	<u> </u>	S1.Softwar	re Enginee	ering;	S2.Dai	ta E	lase	e Mo	ana	gen	nen	t; S	3.W	eb l	Jes	ign						

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					

10			
11			
12			
13			
14			
15			

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi			o. of qu					CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Analysis of plane trusses.	03	1	-	-	-	-	-	1	CO1	L6
2	Analysis of continuous beams.	03	1	-	-	I	-	-	1	CO2	L6
3	Analysis of portal frames.	03	1	-	-	I	-	-	1	CO3	L6
	Understanding basic features of	03	1	-		-	-	-	1	CO4	L6
	Project management software.										
5	Design of Singly Reinforced Beams	03	-	1	-	I	-	-	1	CO5	L6
6	Design of Doubly Reinforced	03	-	1	-	-	-	-	1	CO6	L6
	Beams										
7	Design of One way Slabs	03		1	-	-	-	-	1	CO7	L6
8	Design of Two way Slabs	03	-	1	-	-	-	-	1	CO8	L6
9	Computation of Earthwork	03	-	-	1	-	-	-	1	CO9	L6
10	Design of horizontal curve by offset	03	-	-	1	-	-	-	1	CO10	L6
	method										
11	Design of Super elevation.	03	-	-	1	-	-	-	1	CO11	L6
-	Total	40	7	8	5	5	5	5	20	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Final CIA Marks	20	-	-
Slip test			
Other Activities – define –			
		-	-
Seminar - 3		_	_
Seminar - 2	-	_	-
Seminar - 1	-	-	-
Assignment - 3	-	-	-
Assignment - 2	-	-	-
Assignment - 1	-	-	-
<u> </u>			
CIA Exam – 3	-	CO9,CO10,CO11,	L5, L6
CIA Exam – 2	-	CO5, CO6, CO7,CO8,	L5, L6
CIA Exam – 1	15	CO1, CO2, CO3, CO4	L5, L6
Evaluation	Weightage in Marks	CO	Levels

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	40 Marks

_

5	SEE	60 Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01 : Analyze the given truss using STAAD Pro software.

	Exporiment No :	1 Marks		Date		Date	
-	Experiment No.:	1 Marks		Planned		Conducted	
1	Title	Analyze the give	n truss using		software	conductod	
2	Course Outcomes	Students should		<i>.</i>			
	Aim	To find the rea					n moment
		shear force an					g moment,
4	Material / Equipment Required						
5	Procedure, Program,	1.0pen staad so	ftware.				
	Activity, Algorithm, Pseudo	2. A new project type as plane.	is started wi	th units mete	rs and kilone	ewtons and s	tructure
		3.the given struc of the software a				graphical use	er interface
		4.define the mat truss using com		y as steel and	l assign defir	ned property	to drawn
		5. define suppor	ts and assigr	n to specified	nodes.		
		6. define nodal l node cursor.	oads and ass	sign to specifi	ied nodes in	truss membe	er by using
		7. perform analy	sis commane	d.			
		8. the file was sa	ived and run	command w	as performe	d.	
		9. it is made sure	e that no erro	ors are obtain	ed .		
		10. post process	ing mode wa	as selected.			
		11. the results ar	e properly ar	ranged using	the tools.		
		12. printouts are	taken				
6	Results & Analysis						
		Results at suppo					
7	Application Areas	Results at suppo	ort B = of beams				
	Remarks	Design					
9	Faculty Signature with Date						

Experiment 02:

-	Experiment No.:	2	Marks		Date Planned	Date Conducted			
1	Title	Anal	Analyze the given continuous beam using STAAD Pro software.						
2	Course Outcomes	Stude	Students should be able to analyze the continuous beams						
3	Aim	To fir	Fo find the reactions at the supports and draw the bending moment,						

		shear force and axial forces in diagram using STAAD pro.
4		Lab Manual
	Equipment Required	
5		Basic knowledge of design of beams.
	Principle, Concept	
6	· · ·	1.Open staad software.
	Algorithm, Pseudo	2. A new project is started with units meters and kilonewtons and structure type as plane.
	Code	3.the given structure is drawn in the workspace using graphical user interface of the software according to given dimensions.
		4.define the material property as steel and assign defined property to drawn truss using commands.
		5. define supports and assign to specified nodes.
		6. define nodal loads and assign to specified nodes in truss member by using node cursor.
		7. perform analysis command.
		8. the file was saved and run command was performed.
		9. it is made sure that no errors are obtained .
		10. post processing mode was selected.
		11. the results are properly arranged using the tools.
		12. printouts are taken
7	Results & Analysis	Results at support A =
		Results at support B =
	Application Area Remarks	Design of continous beams
9 10	Faculty Signature	
10	with Date	

Experiment 03 :

Analyze the given Portal Frames using STAAD Pro software.

-	Experiment No.:	3	Marks	Date Planned	Date Conducted
1	Title	Analy	ze the giver	Portal Frames using STAAD P	ro software.
2	Course Outcomes	Stude	ents should I	e able to analyze the Portal Fr	rames.
3	Aim	To Ar	alyze the giv	en Portal Frames using STAAI) Pro software.
4	Material / Equipment Required	(Lab N	1anual		
5	Theory, Formula Principle, Concept	,-			
	Procedure, Program, Activity	Start	n STAAD pr with new p t structura	roject set unit's to m & KN	and structure type as Plane. ccording to given problem.

7	Results & Analysis	The given structure is drawn in the workspace using the graphical user interface of the software. Define section property as rectangular according to given dimension assigned to the members drawn by using assign to view option / assign to selected beams Create support condition as fixed and assign to nodes at base of model. Define load cases and assign to the members. Perform analysis command was given, the file was saved and run analysis command was executed. It is made sure that there is no error is indicated in the output window Post processing mode was selected The results were properly arranged using the tools, Printouts were taken Reaction at support Bending moments Shear forces
8	Application Areas	
9	Remarks	
10	Faculty Signature with Date	

Experiment 04 : scheduling of project

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	CALE	NDAR					
2	Course Outcomes							
3		10 ha	ours betwe rday of the	en. The cal	endar shou	ld include	g days per holidays on endar as pro	n the third
4	Material / Equipment Required	Lab N	1anual					
5	Theory, Formula, Principle, Concept	Basic	knowledge	of design of	retaining wal	l		
	Algorithm, Pseudo		o project mo	enu > prope	erties > cha	nge workin	g time.	
			e want to be		default cale	ndar, click o	create new l	base
			•				existing cale ne calendar	
		In th	e "name bo	ox", type yo	ur name of	a new base	e calendar.	
		Click	ok.					

		On the calendar, select the days u want to change.
		Click the "detail" tab and set working time for the next working sheet. Click ok.
		Now the "option" tab has to be clicked $>$ calendar option for project set working time.
		For editing calendar, refer "work weeks" and "exceptions".
7	Results & Analysis	
8	Application Areas	
9	Remarks	
10	Faculty Signature	
	with Date	

Experiment 05 : design of singly reinforced beams.

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	sing	ly reinforced	beams	5			
2	Course Outcomes							
3		give	n	reinfor	ced beam sec	tion to res	sist the mor	nent
	Equipment Required	Lab N	Manual					
5	Theory, Formula, Principle, Concept							
	Procedure, Program, Activity, Algorithm, Pseudo Code			Design	of A Singly Reinforced	Beam		
			Step		Formulae	Value	Unit & Remarks	
			Effective Span		L	6	m, given	
			Span to effective de Effective Depth	pth ratio	L/d d=span/20	20	From Code m	
			b/d Ratio		b/d	0.5	Assumed	
			Breadth		b=MAX(C4*C5,0.20)	0.2	m	
			Cover		c	0.05	m	
			Overall Depth		D	0.35	m	
			Xu		X _u /d =0.48	0.144	m	
			Weight Density of C Self-Weight/m run	Concrete	γ bxDxγ	25	kN/Cu.m kN/m	
			Live Load		LL	3	kN/m	
			Total Load		TL = Self Weight + LI		kN/m	
			Factored Load		FL= 1.5 x TL	7.125	kN/m	
			Factored BM		FL x L x L/8 FM=0.138 x fck x b x dxd	0.24101	kN/m m	
			Check for 'd'		Sufficient or not	OK CTA 225	6	
			Ast Ao		0.36 fck b Xu/0.87 fy .85 b d / fy	574.325 122.892	Sq. mm Sq. mm	
			Area of steel Provid	ed	min (Ast, A ₀)	574.325	Sq. mm	
7		Dept	dth of beam p h of beam pro of steel Prov	vided =				
8	Application Areas							
	Remarks							

10	Faculty	Signature	
	with Date		

Experiment 06 : design of doubly reinforced beams

-	Experiment No.:	6	Marks	Date Planned		Date Conducted
1	Title	doub	ly reinforced bea			conducted
2	Course Outcomes		J			
3	Aim					
4		Lab M	lanual			
	Equipment					
	Required					
5	Theory, Formula, Principle, Concept	Basic	knowledge of desigr	of water tank		
6	· · ·					
6	Procedure,					
	Program, Activity,		B 2	A Cinala Deinfermal D		
	Algorithm, Pseudo		Desig	n of A Singly Reinforced B	eam	Unit &
	Code		Step	Formulae	Value	Remarks
			Effective Span	L	6 1	m, given
			Span to effective depth ratio	L/d		From Code
			Effective Depth	d=span/20	0.3 1	m
			b/d Ratio	b/d		Assumed
			Breadth	b=MAX(C4*C5,0.20)		m
			Cover	с		m
			Overall Depth	D		<u>m</u>
			X _u	Xu/d =0.48		m
			Weight Density of Concrete Self-Weight/m run	γ bxDxy		kN/Cu.m kN/m
			Live Load	LL	+ +	kN/m
			Total Load	TL = Self Weight + LL	-	kN/m
			Factored Load	FL= 1.5 x TL		kN/m
			Factored BM	FL x L x L/8	32.0625 1	kN/m
				FM=0.138 x fck x b x		
			C1 1 0 17	dxd		m
			Check for 'd' Ast	Sufficient or not	OK 574 225	Sa mm
			Ast A ₀	0.36 fck b Xu/0.87 fy .85 b d / fy		Sq. mm Sq. mm
			Area of steel Provided	min (Ast, A ₀)		Sq. mm
	Results & Analysis					
	Application Areas					
9	Remarks					
10	Faculty Signature					
-	with Date					

Experiment 07 : design of one way slabs

-	Experiment No.:	7	Marks	Date Planned	Date Conducted	
1	Title					
2	Course Outcomes					
3	Aim					
4	Material	Lab N	1anual			
	Equipment					
	Required					

5	Theory, Formula, Principle, Concept	
6	Procedure, Program, Activity,	10. Excel Application: Design of one way slab. DESIGN OF ONE WAY SLAB
		Given
	Algorithm, Pseudo	Clear Span of slab (L) = 5 m
		Support Thickness = 200 mm
	Code	Grade of Concrete = M20
		Compressive Strength of = 20 N/mm ²
		Concrete (f.a)
		Grade of Steel = Fe415 Compressive Strength of Steel = 415
		(fy) Floor Finish = 1 kN/m^2
		Live Load = 4 kN/m^2
		Density of Concrete (γ) = 25 kN/m ³
		Support Condition = Simply Supported
		= 25
		$\mathbf{d}_{eff} = 200 \text{ mm}$
		Assume Cover = 25 mm
		Overall Depth(D) = 225 mm
		b = 1000 mm
		Effective Span = 5200 mm
		Calculation of Loads
		Dead Load = (Density (y)xD)
		= 5.625 kN/m ²
		Live Load = 4 kN/m^2
		Floor Finish = 1 kN/m^2
		$\begin{array}{c c} \hline Total Load (W) = DL+L+FF \end{array}$
		$W = 10.625 \text{ kN/m}^2$
		Calculation of Moments
		ALL EDGES DISCONTINUOUS
		$M_u = $ Mu = 53.87 kN-m
		Mu = 53.87 kN-m
		Calculation of Shear Force
7	Results & Analysis	
	Application Areas	
•	Remarks	
10	Faculty Signature	
10		
	with Date	

Experiment 08 : design of two way slabs

-	Experiment No.:	8	Marks		Date Planned	Dai Condu	
1	Title	Desig	yn of Two Wa	y Slab.			
2	Course Outcomes						
3	Aim	To cre	eate Excel sh	neet for Desig	ining Two way	slab.	
4	Material / Equipment Required	Lab N	Manual				
5	Theory, Formula, Principle, Concept						
	Procedure, Program, Activity, Algorithm, Pseudo Code						
7	Results & Analysis						
8	Application Areas						
9	Remarks						
10	Faculty Signature with Date						

Experiment 09 : computation of earthwork

-	Experiment No.:	9	Marks		Date Planned		Date Conducted	
1	Title	Earth	work				conductod	
2	Course Outcomes							
		a spi	read sheet	e earthwork applicatior		having a le	evel sectior	ı by using
4	Material / Equipment Required	Lab N	1anual					
5	Principle, Concept	a) Mid b) Avd c) Tra d) Sin Trape 1 st are 3 rd are Last a Total	d-ordinate m erage ordina pezoidal rule ezoidal rule : ea ={O1 + O2} ea ={O3 + O4 area =O _{n-1} + C area=d/2{ O	ate method e /2 * d. 2 } /2 * d.	nd area ={O2 + .+2On-1+On}	03] /2 * d.	J	
6	Procedure, Program, Activity, Algorithm, Pseudo Code							
7				<mark>าwork using</mark> hwork using	•			
8	Application Areas							
9	Remarks							
	Faculty Signature with Date							

Experiment 10 : design of horizontal curve

-	Experiment No.:	10	Marks		Date Planned	Date Conducted
1	Title			·		
2	Course Outcomes					
3	Aim		alculate the n horizonta		at 10 m inter	al from the long chord for the
	Material / Equipment Required	<u> </u>	1anual			
5	Theory, Formula Principle, Concept	9				

		x distance Ordinate
		$O_0 = R - \sqrt{R^2 - L/2}$
		$O_{10} = O_x = \sqrt{R^2 - x^2} - (R - O_0)$
		$O_{40} =$
		040 -
	Procedure,	
	Program, Activity, Algorithm, Pseudo	
	Code	
-		Necessary ordinates were calculated and an approximate plot is
		made using excel chart.
8	Application Areas	
	Remarks	
	Faculty Signature	
	with Date	

Experiment 11 : design of super elevation

-	Experiment No.:	11	Marks		Date Planne	d	Date Conducted		
1	Title	Supe	er Elevatior	า					
2	Course Outcomes								
3	Aim		prepare a programmed spread sheet to design the super elevation a horizontal curve.						
4	Material / Equipment Required	Lab №	b Manual						
5	Theory, Formula, Principle, Concept								
6	Procedure,			De	sign of Su	per Elevation			
	Program, Activity,		Allowable S	uper Elevation		0.07			
	Algorithm, Pseudo		Allowable C	oefficient of Fr	iction (f)	0.15			
	Code		Design Spee	d (v)		100			
			75% of Desi	gn Speed		= 75 % of Desig	n Speed		
			Radius of Ci	Radius of Circular Curve(R)					
			Super Elevat	tion Calculated		$= V^2/225 * R$			
			Super Elevat	tion to be provi	ded	SE Cal (or) 0.07 whichever is less			
			f = Friction l	Developed		$F = V^2 / (127 * R)$			
			Sufficiency	of Friction Coe	fficient	F Developer sho allowable friction	1		
			Allowable S	Allowable Speed			ent limit the sp 27.94 * R)	eed at	
7	Results & Analysis	Super	r Elevation P	rovided =					
		Speed	d limit propo	sed =					
8	Application Areas								
9	Remarks								
10	Faculty Signature								
	with Date								

F. Content to Experiment Outcomes

1. TLPA Parameters

		•					,
Expt-						Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning		Action	on	Methods to
	have similar concepts)	g Hours	Levels	Bloo	Verbs for	Methods	Measure
			for	ms'	Learning	for	Learning
			Content	Lev	_	Learning	_
				el			
A	В	С	D	Ε	F	G	Н
1	Analysis of plane trusses.	3	L6	L6	-	Lecture/	Slip
					-	Practical	Test/Assign
							ment
2	Analysis of continuous beams.	3	L6	L6	-	Lecture/	Slip
					_	Practical	Test/Assign
							ment
3	Analysis of portal frames.	3	L6	L6	-	Lecture/	Slip
_		_			-	Practical	Test/Assign
							ment
4	Understanding basic features of Project	3	L6	L6	-	Lecture/	
	management software.	Ű			-		Test/Assign
							ment
5	Design of Singly Reinforced Beams	3	L6	L6	-	Lecture/	
		U			-		Test/Assign
							ment
6	Design of Doubly Reinforced Beams	3	L6	L6	-	Lecture/	
		U			-		Test/Assign
							ment
7	Design of One way Slabs	3	L6	L6	-	Lecture/	
					-		Test/Assign
							ment
8	Design of Two way Slabs	3	L6	L6	-	Lecture/	Slip
		_			-		Test/Assign
							ment
9	Computation of Earthwork	3	L6	L6	-	Lecture/	
				-	-		Test/Assign
							ment
10	Design of horizontal curve by offset method	3	L6	L6		Lecture/	
_			-	-			Test/Assign
							ment
11	Design of Super elevation.	3	L6	L6		Lecture/	
				-			Test/Assign
							ment
L	1	1					

Table 1: TLPA – Example Course

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

E	Expt	ot Learning or Identified Final Concept		Concept	CO Components	Course Outcome	
	- #	Outcome Concepts		Justification	(1.Action Verb,		
		from study	from		(What all Learning	2.Knowledge,	Student Should be
		of the	Content		Happened from the	3.Condition /	able to
		Content or			study of Content /	Methodology,	
		Syllabus			Syllabus. A short	4.Benchmark)	
					word for learning or		
					outcome)		
	Α	1	J	K	L	М	N

1	Analysis of plane trusses.	Truss	Truss	Truss	Condition	Students should be able to analyze the Plane Trusses
2	Analysis of continuous beams.	Beams	Beams	Beams	Condition	Students should be able to analyze the continuous beams.
	Analysis of portal frames.	Portal Frames	Portal Frames	Portal Frames	Condition	Students should be able to analyze the Portal Frames
4	Understandi ng basic features of Project managemen t software.	ent	Project Management	Project Management	Condition	Students should be able to Schedule the project using MSP
5	Design of Singly Reinforced Beams	Design of Beams	Design of Beams	Design of Beams	Condition	Students should be able to design the Singly Reinforced Beams
6	Design of Doubly Reinforced Beams	Design of Beams	Design of Beams	Design of Beams	Condition	Students should be able to design Doubly Reinforced Beams
7	Design of One way Slabs	Design of Slabs	Design of Slabs	Design of Slabs	Condition	Students should be able to design One Way Slabs
8	Design of Two way Slabs	Design of Slabs	Design of Slabs	Design of Slabs	Condition	Students should be able to design Two way Slabs.
9	Computatio n of Earthwork	Estimatio n	Estimation	Estimation	Condition	Students should be able to measure earthwork.
10	Design of horizontal curve by offset method	Design of Curve.	Design of Curve.	Design of Curve.	Condition	Students should be able to design horizontal curve
11	Design of Super elevation.	Design of Curve.	Design of Curve.	Design of Curve.	Condition	Students should be able to design Super elevation.